
1.  Introduction
Since its inception almost 70 years ago (Monin & Obukhov, 1954), the validity of the Monin-Obukhov Similarity 
Theory (MOST) has been investigated across a range of sites, with mixed results, above both flat and complex 
terrains (Asanuma & Brutsaert, 1999; Barskov et al., 2019; Cancelli et al., 2012; Chor et al., 2017; Dellwik & 
Jensen, 2005; Denmead & Bradley, 1985; Detto et al., 2008; Dyer, 1974; Dyer & Hicks, 1970; Hogstrom, 1988; 
Hsieh et  al.,  2008; Katul et  al.,  1995; Katul, Hsieh, et  al.,  1996; Li et  al.,  2012; Raupach,  1979; Waterman 
et al., 2022; Weaver, 1990; Williams et al., 2007; Zahn, Dias, et al., 2016). Nonetheless, despite its known limi-
tations, MOST functions—in particular the flux-gradient relation—have been directly or indirectly implemented 
to estimate scalar fluxes in field measurements or as surface parameterization schemes in large scale models. 
The variance function has also been used in closure parameterizations in Earth System Models that implement 
high-order schemes (Waterman et  al.,  2022). Furthermore, the variance method has been used in gap-filling 
methods (Cava et al., 2008; Dias et al., 2009). Alternatives and adjustments to MOST have been proposed, but 
none seems to be able to compete with the elegant simplicity and breadth of applicability of the original theory. 
As a consequence, studies focused on advancing MOST implementation, delineating its skill limits, or proposing 
alternative formulations continue to be of great relevance to the various geoscientific research communities.

Abstract  The Monin-Obukhov Similarity Theory (MOST) links turbulent statistics to surface fluxes 
through universal functions. Here, we investigate its performance over a large lake, where none of its 
assumptions (flat homogeneous surface) are obviously violated. We probe the connection between the 
variance budget terms and departure from the nondimensional flux-variance function for CO2, water vapor, 
and temperature. Our results indicate that both the variance storage and its vertical transport affect MOST, and 
these terms are most significant when small fluxes and near neutral conditions were prevalent. Such conditions 
are common over lakes and oceans, especially for CO2, underlining the limitation of using any MOST-based 
methods to compute small fluxes. We further show that the relaxed eddy accumulation (REA) method is more 
robust and less sensitive to storage and transport, adequately reproducing the eddy-covariance fluxes even 
for the smallest flux magnitudes. Therefore, we recommend REA over MOST methods for trace-gas flux 
estimation.

Plain Language Summary  The Monin-Obukhov Similarity Theory (MOST) is a cornerstone of 
Earth observations and models. It defines a set of functions that are commonly used to estimate the exchange 
of heat, water vapor, and other trace gases between the surface and the atmosphere. MOST was originally 
formulated for “ideal” conditions that rarely prevail in the real world (e.g., fair steady weather and large flat 
surfaces with little spatial variation in surface cover or moisture conditions). Here, we show that the theory 
may be equally inaccurate under supposedly ideal conditions where its assumptions are met. We investigate 
the performance of MOST above a large lake, identifying additional constraints on its performance related to 
the behavior of turbulence in the atmosphere. One consequential finding is that the theory misrepresents the 
exchange of small fluxes, which are prevalent over lakes and oceans. In our analyses, it predicted high CO2 
fluxes from the lake when in reality the fluxes were very small, a problem that can hinder the understanding 
of the global carbon cycle. We show that the relaxed eddy accumulation method, an alternative to MOST, not 
only outperforms, but is also more robust to deviations from ideal conditions, representing small fluxes more 
accurately.
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According to Foken (2006), the ideal conditions for implementation of MOST are (a) measurement heights z limited 
to the surface layer (z ⪅ 3 h, where h is the canopy height), (b) stability range |ζ| ≤ 1–2 (where ζ = z/L is the MOST 
stability parameter and L is the Obukhov length), and (c) homogeneous surfaces. Under typical waves conditions (no 
swell or breaking waves), lakes are surfaces that satisfy most of these requirements, in particular the homogeneity 
of  sources of water vapor, temperature, and CO2. However, as will be discussed in our study, even under these condi-
tions, deviations from MOST are observed. To date, few studies have focused on such assessments of MOST, or alter-
native flux models such as the relaxed eddy accumulation (REA) method, over water surfaces (Armani et al., 2020; 
Assouline et al., 2008; Cancelli et al., 2012; Dias & Vissotto, 2017), while even fewer investigated the performance of 
MOST functions to compute CO2 fluxes above freshwater bodies (Xiao et al., 2014; Zhao et al., 2019) or oceans (Iwata 
et al., 2004; Lammert & Ament, 2015). Nevertheless, these micrometeorological methods offer a direct approach to 
estimate air-sea gas exchange that circumvents the need for estimating a transfer velocity (Zemmelink et al., 2004).

To help bridge these knowledge gaps, this study explores the turbulence dynamics responsible for modulating 
MOST performance. We first investigate the performance of the variance method for water vapor, temperature, 
and CO2 at four levels above lake Geneva, in Switzerland. The departure from MOST is then further explored 
based on the different terms of the variance budget, and implications to other similarity functions are discussed. 
Multiple measurement levels are rarely available in such experiments, but are needed to directly compute the 
budget terms we rely on in the present analyses. Given the limitations of MOST, we then investigate whether the 
REA method—which is similar in formulation to the variance method but does not rely on an empirical MOST 
function or stability parameter—is more robust to the estimation of low fluxes. The questions that motivate this 
study are the following

1.	 �What physical processes, and corresponding terms in the variance budget, explain deviations from MOST?
2.	 �Does the REA method suffer from the same limitations as the variance and flux-gradient methods?

To answer these questions, we demonstrate the impacts of the variance budget terms, with emphasis on vertical 
transport and storage of variance, on the deviation from MOST. We then conclude with a comparison of fluxes 
for all three scalars above the lake using eddy-covariance, variance function, and the REA methods, explaining 
why the REA performance is superior to MOST-based approaches.

2.  Theory
2.1.  Variance Budget of Scalars

Assuming horizontal homogeneity, the variance budget for a scalar s can be written as (Stull, 1988):
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where 𝐴𝐴 𝜇𝜇 represents the mean estimated from a time average of a statistic μ, μ′ is the turbulent fluctuation from 
the mean 𝐴𝐴

(

𝜇𝜇′ = 𝜇𝜇 − 𝜇𝜇
)

 ; t is time; and z and w are the vertical coordinate and velocity component, respectively. 
The different budget terms are Ss, the local storage of variance; Ps, the gradient production term; Ts, the vertical 
turbulent transport; and Ds, the molecular dissipation of variance. The radiative term in the variance budget 
for temperature was neglected. Note that the negative signs were already included in the definition of each 
term. All  terms are further nondimensionalized by an “estimate” of production 𝐴𝐴 𝐴𝐴 ∗

𝑠𝑠  obtained using attached eddy 
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where κ is the von Karman constant, 𝐴𝐴 𝐴𝐴∗ =
(

𝑤𝑤′𝑢𝑢′
2

+𝑤𝑤′𝑣𝑣′
2
)1∕4

 is the friction velocity, and 𝐴𝐴 𝐴𝐴∗ = 𝑤𝑤′𝑠𝑠′∕𝑢𝑢∗ is the 
turbulent scale for s. Our analyses will thus investigate the importance of each term with respect to production.

2.2.  Monin-Obukhov Nondimensional Functions for Variance and Gradients

MOST postulates the existence of nondimensional universal functions valid for any scalar (Foken, 2017). Accord-
ing to the theory, these functions are solely governed by the Obukhov stability parameter ζ,
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where g is gravity and Tv is the virtual temperature. By definition, ζ > 0 for stable conditions, ζ ≈ 0 for near 
neutral conditions, and ζ < 0 for unstable conditions.

Two well explored MOST non-dimensional functions are the gradient function Ψs(ζ) and the variance function 
ϕs(ζ), defined as

Ψ𝑠𝑠(𝜁𝜁 ) =
𝜕𝜕𝑠𝑠
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𝜙𝜙𝑠𝑠(𝜁𝜁 ) = 𝜎𝜎𝑠𝑠∕𝑠𝑠∗,� (5)

where 𝐴𝐴 𝐴𝐴𝑠𝑠 =

(

𝑠𝑠′2
)1∕2

 is the standard deviation of s′. The most commonly used empirical forms of these functions 
are (Hogstrom, 1988; Kaimal & Finnigan, 1994).

Ψ𝑠𝑠(𝜁𝜁 ) = 𝐶𝐶1(1 − 𝐶𝐶2𝜁𝜁 )
−1∕2,� (6)

𝜙𝜙𝑠𝑠(𝜁𝜁 ) = 𝐶𝐶3(𝐶𝐶4 − 𝜁𝜁 )−1∕3,� (7)

where C1, C2, C3, and C4 are empirical parameters obtained from field (Businger et al., 1971; De Bruin et al., 1993; 
Hogstrom, 1988; Kaimal & Finnigan, 1994; Liu et al., 1998; Wyngaard et al., 1971) or numerical experiments 
(Maronga & Reuder, 2017). These functions connect the gradient or the variance of a scalar to its fluxes (represented 
by s*). If the universality hypothesized by MOST is valid, Ψs (and ϕs) should be equal for any scalar (Hill, 1989). 
This is the most important feature of the theory since it provides a tool to compute fluxes of a scalar solely from its 
gradient or variance, which can be obtained using slower or cheaper/simpler sensors (e.g., thermocouples or capac-
itance hygrometers) or from fast gas sensors without a sonic anemometer. This relaxes the need for fast velocity 
measurements or careful sensor position or distortion corrections (Katul et al., 1994; Katul, Finkelstein, et al., 1996).

Similarly, in Earth System or numerical prediction models, Equation 6 is used to estimate the flux exchange 
between the surface and atmosphere. Explicitly, turbulent fluxes from the flux-gradient method (FG) and from 
the flux-variance method can be computed as follows:

�′�′�� = �∗
��
��

��
Ψ�(� )

, (8)

�′�′�� = �∗
��

��(� )
. (9)

�

Both equations can be further manipulated by combination with expressions  3,  6, and  7. Depending on the 
available data, the fluxes might be found using an iterative process (such as when u* is not available) or directly 
when u* is measured or when measurements for “proxy” scalars, assumed to be similar to the scalar of interest, 
are available.

2.3.  Relaxed Eddy Accumulation

The REA method (Businger & Oncley, 1990) can be derived directly from the eddy-covariance expression, after 
assuming linearity between w′ and s′ (Katul, Finkelstein, et al., 1996; Katul et al., 2018). The derivation of REA 
is shown Section S1 in Supporting Information S1, where the final flux expression is

𝑤𝑤′𝑠𝑠′REA = 𝛽𝛽𝑠𝑠𝜎𝜎𝑤𝑤

(

𝑠𝑠+ − 𝑠𝑠−
)

.� (10)

βs is an empirical coefficient, σw is the standard deviation of the vertical velocity, and 𝐴𝐴 Δ𝑠𝑠 = 𝑠𝑠+ − 𝑠𝑠− is the differ-

ence in concentration s for updrafts (𝐴𝐴 𝑠𝑠+ , including only measurements of s when w′ > 0) and downdrafts (𝐴𝐴 𝑠𝑠− , 
including only measurements when w′ < 0).

While the coefficient βs was originally proposed to be similar across scalars but a function of the stability param-
eter, many studies found no clear variability with ζ (Businger & Oncley, 1990; Katul, Finkelstein, et al., 1996; 
Zahn, Dias, et al., 2016). In fact, various studies show that βs is quite steady with an average of ≈0.6 (Bowling 
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et al., 1998; Katul, Finkelstein, et al., 1996) for different scalars, suggesting that the coefficient computed for a 
“proxy” scalar can be extrapolated to other scalars.

Field implementations of REA usually consist of two separate containers sampling air for updrafts and downdrafts 
in order to compute 𝐴𝐴 Δ𝑠𝑠 = 𝑠𝑠+ − 𝑠𝑠− (Bowling et al., 1998). According to Katul, Finkelstein, et al. (1996), because 
only the accumulation measurements are required (not instantaneous correlations), slow response sensors can be 
employed. Bowling et al. (1998) argues that REA might be even more appropriate than conventional EC systems 
for measuring small CO2 fluxes over the ocean. According to the authors, EC sensors might lack the sensitivity 
to measure the concentrations when CO2 fluxes are very small. REA, on the other hand, allows measuring the 
concentration from larger air samples and more accurate analysis with high-precision techniques. Thus, the REA 
method is a very popular alternative to measure trace gases when measurements by eddy-covariance systems are 
expensive or not possible.

3.  Experimental Data
3.1.  Site Details

The data set used in our analyses is from the Lake-Atmosphere Turbulent Exchange field campaign (August–
October 2006) over Lake Geneva, Switzerland (details of the experiment can be found in Bou-Zeid et al. (2008) 
and Vercauteren et al. (2008)). Eddy-covariance data was sampled at four levels above the water surface (z = 1.65, 
2.30, 2.95, and 3.60 m) at 20 Hz. All levels were equipped with a sonic anemometer (Campbell Scientific CSAT3) 
and open-path gas analyzer (Licor-7500), which simultaneously collected time series of CO2 (c), water vapor (q), 
atmospheric pressure (P), sonic temperature (Ts), and the velocity components in the streamwise (u), cross-stream 
(v), and vertical (w) directions. Only unstable conditions were considered.

3.2.  Data Processing

Quality control of the raw high-frequency data included removal of periods identified by various sensors flags, 
detection and removal of outliers, and gap-filling (Zahn, Chor, & Dias, 2016). Pre-processing consisted of density 
corrections for c and q (Detto & Katul, 2007) and double rotation of the velocity components. The turbulent 
fluctuations were computed around the 30-min average. In addition, a stationarity statistic for variances was 
computed based on the test described in Foken (2017),

𝜉𝜉𝑠𝑠 =
|

|

|

|

|

𝑠𝑠′𝑠𝑠′5min − 𝑠𝑠′𝑠𝑠′30min

𝑠𝑠′𝑠𝑠′30min

|

|

|

|

|

× 100,� (11)

who suggested that steady-state conditions can be assumed if ξs < 30%. We did not discard data based on this 
criterion; instead, ξs is used solely for the purpose of investigating how nonstationarity impacts the variance func-
tion. Nonetheless, we restricted our data according to the wind direction, selecting only periods when the angle 
between the mean wind and the sensor axis was smaller than 135°.

We verified the existence of a time-varying sensor mean bias for scalars in our data set, which prevented the 
accurate computation of mean scalar gradients. For this reason, the flux-gradient expression 6 was here estimated 
from the residual of the variance budget equation (Ps = Ss − Ts − Ds) assuming that the effects of horizontal 
advection are small, which was confirmed by Assouline et al. (2008) for this data set. Note that the transport term 
is solely based on turbulent fluctuations—not being affected by mean biases—and was thus directly computed.

The storage term in Equation 1 was computed from the slope of a linear fit of the scalar variance 𝐴𝐴 𝑠𝑠′2 over 30 min. 
To compute the vertical derivatives for transport, we first fit a second order polynomial function across all four 
levels of the third order moments 𝐴𝐴 𝑤𝑤′𝑠𝑠′𝑠𝑠′ ; the derivative was then obtained from the slope of the respective 
polynomials for each period at z = 3 m. The dissipation of variance was estimated from the second-order structure 
function Dss following Chamecki and Dias (2004) (more details in Section S2 in Supporting Information S1). 
Finally, while there are multiple variants of REA, depending on sensor response time and approaches to accumu-
late the fluxes (Foken, 2017), here we will only test that basic formulation where the s + and s − are computed from 
high frequency data to simulate an actual REA system. We thus compute the term Δs by conditionally sampling 
s based on the sign of w′ with no lower threshold on |w′|.



Geophysical Research Letters

ZAHN ET AL.

10.1029/2023GL103099

5 of 11

4.  Results and Discussion
We first compute the variance function for all three scalars as shown in Figures 1a–1c, where we include the 
best fit for the empirical form as defined by Equation 7 (the color scheme represents the stationarity statistic 
from Equation 11). In the curve fitting process, we only considered data points where production and dissipation 
were in near balance to guarantee optimal MOST applicability as we will discuss in Section 4.1. Thus, by visual 
inspection of Figure 2, we selected only periods when transport and storage are negligible using the follow-
ing criteria: 𝐴𝐴 |𝑆𝑆𝑠𝑠∕𝑃𝑃

∗
𝑠𝑠 | < 0.1 and 𝐴𝐴 |𝑇𝑇𝑠𝑠∕𝑃𝑃

∗
𝑠𝑠 | < 1 for CO2, and 𝐴𝐴 |𝑆𝑆𝑠𝑠∕𝑃𝑃

∗
𝑠𝑠 | < 0.01 and 𝐴𝐴 |𝑇𝑇𝑠𝑠∕𝑃𝑃

∗
𝑐𝑐 | < 0.5 for water vapor and 

temperature, resulting in the following

𝜙𝜙𝑐𝑐(𝜁𝜁 ) = 2.35(0.31 − 𝜁𝜁 )−1∕3,� (12)

𝜙𝜙𝑞𝑞(𝜁𝜁 ) = 1.22(0.08 − 𝜁𝜁 )−1∕3,� (13)

𝜙𝜙𝑇𝑇 (𝜁𝜁 ) = 1.27(0.06 − 𝜁𝜁 )−1∕3.� (14)

Empirical curves obtained over a homogeneous surface by Liu et al. (1998) are shown in the figure, indicating a 
close agreement with the curves found over our lake.

Clearly, CO2 has the most noticeable scatter, i.e., deviation from the MOST variance function even after filtering 
out periods most affected by storage and transport. Water vapor and temperature, on the other hand, are more 
similar (with closer fitting coefficients) when only “good” periods are retained (i.e., steady periods with small 
transport terms). In terms of stability, more deviation from MOST is observed for mildly unstable conditions 
(ζ ≈ −0.1). Notice that steady periods (ξs < 30%) usually correspond to points close to the empirical curves, 
meaning that they are more likely to follow the scaling. Nonetheless, the presence of stationary periods that devi-
ate from the expected values indicate that steadiness alone does not guarantee agreement with MOST. To further 
identify other causes for the deviation from MOST, we will now explore its connection to the variance budget.

Figure 1.  Variance function for (a) CO2, (b) water vapor, and (c) temperature. Data for all four levels are included. The solid black line represents the empirical 
fit obtained over the lake using only “ideal” periods. Empirical curves found over homogeneous sites by Liu et al. (1998) are also shown in red. The color scheme 
represents the stationarity statistic. Flux-gradient function obtained from the residual of the variance budget Equation 1 for (d) CO2, (e) water vapor, and (f) temperature. 
The color scheme represents the combined effects of nondimensional transport and storage terms. The empirical curve is from the large eddy simulation results of 
Maronga and Reuder (2017), with C1 = 1 and C2 = 19.7.
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4.1.  Deviation From the Variance Function Explained by the Budget Terms

To better compare departures from MOST across scalars and conditions and the potential role of various variance 
budget terms, we first define the metric χs,

𝜒𝜒𝑠𝑠 =
|

|

|

|

𝜙𝜙𝑠𝑠(𝜁𝜁 ) − 𝜎𝜎𝑠𝑠∕𝑠𝑠∗

𝜙𝜙𝑠𝑠(𝜁𝜁 )

|

|

|

|

.� (15)

As a reference, we chose ϕs obtained for water vapor over the lake, shown in Figure 1b, given its closer proximity 
to results obtained by Liu et al. (1998). In addition, because we computed the transport term at z = 3 m, we focus 
subsequent analyses on χs as measured by the third sensor (at z = 2.95 m).

The impact of the transport and storage terms on MOST is depicted in Figures 2a–2c, where the color scheme 
represents χs. Their dependence on stability is shown in Figure S2 in Supporting Information S1. Clearly, large 
transport values are associated with large deviation from MOST. In addition, large storage values also seem to 
cause large deviations from the theory. Note that transport and storage are slightly correlated (more obvious for 
CO2), where large transport can be associated with large storage. Overall, the smallest deviations are observed 
when both terms are small compared to production. This result reveals that transport and storage are important in 

Figure 2.  Storage versus transport terms of the variance budget for (a) CO2, (b) water vapor, and (c) temperature. Color 
scheme represents the deviation from the empirical Monin-Obukhov Similarity Theory variance function as defined in 
Equation 15. χs > 10 is represented in the darkest shade of red.
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practice for the applicability of MOST, and they can independently cause large deviations from the theory. These 
findings corroborate the hypothesis proposed by Cancelli et al. (2012) that both terms could play an important 
role in the failure of MOST.

4.2.  Implications for the Flux-Gradient Method

Figures 1d–1f shows the performance of the flux-gradient function. As expected, more scatter is observed for 
CO2 and temperature. Better agreement with the empirical fit is seen for water vapor, where points that deviate 
more are periods featuring large transport or storage of variance. Overall, we notice a similarity between the 
variance function and the gradient-flux methods in terms of how they are affected by variance storage and trans-
port. This similarity can be explained by the variance budget itself. By combining a standard dissipation model 

𝐴𝐴 𝐴𝐴𝑠𝑠 = (𝐶𝐶𝜖𝜖∕𝜏𝜏)𝜎𝜎
2
𝑠𝑠 (where Cϵ is a similarity constant and τ a variance cascade time scale related to eddy turnover time) 

with the variance budget equation and expressions 2, 4, and 5, and ignoring the transport and storage terms, we 
can show that

Ψ𝑠𝑠(𝜁𝜁 ) = −𝐶𝐶𝜖𝜖
𝜅𝜅𝜅𝜅

𝑢𝑢∗𝜏𝜏
𝜙𝜙2
𝑠𝑠(𝜁𝜁 ).� (16)

This equation shows that the flux-gradient and flux-variance methods are directly related. Furthermore, since 
κz/u* is itself a reasonable estimate for the eddy turnover time, we expect (κz)/(u*τ) ≃ 1. Thus, any disturbances 
to the variance function caused by storage or transport (or horizontal advection over other surfaces) also affect 
the FG (and vice-versa). Indeed, we found high correlation between the variance transport and flux transport 
(w′w′s′, not shown here), which is aligned with earlier work documenting the role of the flux transport term in 
the breakdown of MOST (Raupach, 1979; Simpson et al., 1998).

4.3.  Computing Fluxes With the Variance Function

The fluxes for all three scalars computed from the MOST variance-function method are compared to the 
eddy-covariance fluxes in Figures 3a–3c. As expected, fluxes computed from the theory are closer to the real 
measurements only when the combined transport and storage terms are small. In addition, the greatest errors tend 
to occur when the measured fluxes are small and are then widely overpredicted by MOST, which is associated 
with a weak local production term. On the other hand, stronger measured fluxes lead to a strong local production, 
which is then balanced by dissipation. These results are in agreement with the result of Cancelli et al. (2012) and 
Dias and Vissotto (2017) for fluxes over a lake in Brazil.

The poor results found for CO2 are a consequence of the weak local production caused by the small fluxes 
from the lake. This result has direct implications for the exchanges of CO2 and other trace gases between water 
and the atmosphere: if their fluxes are small, such that the equilibrium between production and dissipation 
of variance are disturbed, estimates obtained by MOST are less reliable (as also documented by De Bruin 
et al. (1999)). Therefore, these results indicate that alternative approaches to estimate fluxes in such situations 
are needed.

4.4.  Performance of the Relaxed Eddy Accumulation Technique for Flux Estimation

As an alternative method to compute turbulent fluxes, we now investigate the REA method. We first computed 
the similarity coefficient βs by inverting Equation 10. Negative coefficients were discarded, as well as βs > 1. 
For all three scalars, we found the respective median and median absolute deviation to be 0.58 ± 0.10 (CO2), 
0.60  ±  0.03 (water vapor), and 0.58  ±  0.05 (temperature), in the range found by other authors (Businger & 
Oncley, 1990; Katul, Finkelstein, et al., 1996; Sakabe et al., 2014; Vogl et al., 2021; Zahn, Dias, et al., 2016). This 
variability in βc of around 20% from its median (Figures S3 and S4 in Supporting Information S1) is much smaller 
compared to the scatter seen for the variance function (Figure 1a), which can be up to three orders of magnitude 
above the value predicted by MOST.

To investigate the weak dependence of βs on stability, we rewrite the REA equation as

1

𝛽𝛽𝑠𝑠
=

𝜎𝜎𝑤𝑤Δ𝑠𝑠

𝑤𝑤′𝑠𝑠′
=

𝜎𝜎𝑤𝑤

𝑢𝑢∗

Δ𝑠𝑠

𝑠𝑠∗
= 𝜙𝜙𝑤𝑤(𝜁𝜁 )𝜂𝜂𝑠𝑠(𝜁𝜁 ),� (17)
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where we postulate that ηs = Δs/s* is a function of stability. The bin averages of ϕw and ηq are shown in Figure 3g, 
where we can see a clear dependence on ζ (detailed results for all three scalars are included in Section S4 in 
Supporting Information S1). The same figure, on the other hand, shows that βq is constant. But rather than being 
a fortuitous or empirical result, the figure and Equation 17 demonstrate that the independence of βq from stability 
is the result of the exact cancellation of the ζ effects in the multiplication between ϕw ∝ ζ 1/3 and ηq ∝ ζ −1/3. Since 
both of these exponents are derived to ensure independence from u* in the free convection limit, the scaling β ∝ ζ 0 
is itself a requirement if REA is to recover that free convection scaling. This result thus explains the weak or non 
existent dependence of βs on ζ—at least under unstable conditions—found but not explained in previous studies 
(Baker et al., 1992; Katul, Finkelstein, et al., 1996; Zahn, Dias, et al., 2016), and confirms Foken's hypothesis who 
suggested that the weak dependence was likely caused by the canceling effects of stability (Foken, 2017, p. 184). 

Figure 3.  Comparison of eddy covariance fluxes 
(

�′�′��

)

 versus flux estimated by the variance-flux method for (a) CO2, (b) water vapor, and (c) temperature, and 
versus fluxes estimated by relaxed eddy accumulation for (d) CO2, (e) water vapor, and (f) temperature. L and λ are factors converting the kinematic fluxes to latent and 
sensible heat flux, respectively. Subplot (g) shows bin averages of Δq/q*, σw/u*, and βq versus stability.
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We thus find it practical and reasonable to set a constant βs = 0.59 for all scalars, which also better mimics a field 
experiment where no proxy scalars are available.

Figures 3d–3f compares the eddy-covariance fluxes to the fluxes computed by the REA for all scalars. Noticea-
bly, a much better agreement is obtained, in particular for small flux magnitudes. Good agreement between REA 
and EC estimates has previously been observed for CO2 over a soybean field (Pattey et al., 1993), wheat and 
barley crops (Gallagher et al., 2000), a coniferous forest (Hamotani et al., 1996), and wetlands (Tsai et al., 2012), 
as well as for isoprene over a mixed forest (Bowling et al., 1998). Thus, we further confirm the advantages of 
REA as a flux estimation method over MOST-based models. In particular, the REA is more robust to the influ-
ence of variance storage and transport. This results from the main assumption underlying its derivation, which 
only requires linearity between w′ and s′. Thus, as long as their linearity is not strongly impacted by transport 
and storage, fluxes estimated by the REA should be very close to their eddy-covariance counterparts (Katul 
et al., 2018). Further discussion of the robustness of the REA method is included Sections S1 (see Figure S1 in 
Supporting Information S1), S4 and S5 (see Figure S5 in Supporting Information S1).

The insensitivity of REA to the production-dissipation equilibrium, which is the exception rather than the rule 
in many field experiment conditions, thus emerges as a substantial practical advantage. Therefore, our findings 
support the implementation of the REA method, as opposed to MOST, to estimate small flux magnitudes. None-
theless, we note that there are still practical challenges concerning accurate measurements of trace gases and 
implementation of the REA. This has led to modifications of the method aiming at removing noisy measurements 
by restricting the sampling of updrafts and downdrafts based on a minimum magnitude of the vertical velocity 
(Businger & Oncley, 1990; Pattey et al., 1993; Vogl et al., 2021). In this paper, however, we mainly focused on 
the theoretical basis of the method, ignoring other practical aspects related to sensor sensitivity and accumulation 
device design, among others.

5.  Conclusion
Our findings confirm that MOST's performance hinges on the assumption of local equilibrium between variance 
production and dissipation. In other words, any disruption of this equilibrium, such as storage and transport, might 
lead to departure from the theory and flux overestimation. Small flux magnitudes are usually in non-equilibrium, 
and thus are more likely to be misrepresented by MOST. As a consequence, MOST's application is somewhat 
limited to strong flux conditions (note that the definition of “weak” and “strong” fluxes depend on the scalar in 
question). However, since MOST overestimates the eddy-covariance measured fluxes, it may not be possible in 
practice to identify low flux period using MOST itself to avoid large errors.

On the other hand, REA's performance does not rely on local equilibrium, being capable of estimating reliable 
fluxes even under non-ideal conditions. Therefore, REA is a valuable tool for trace-gas flux estimation that 
should be more broadly adopted in field experiments when possible, particularly that our study demonstrates 
why the REA coefficient β is required to be independent of stability. However, an alternative to MOST in the 
land-surface parameterizations of Earth-System models, where REA is not a suitable alternative, remains elusive.

Data Availability Statement
The raw eddy-covariance data used for analyses in the study are available at https://doi.org/10.5281/
zenodo.7591387 (Zahn, 2023a). The processed data used to reproduce all figures are available at https://doi.
org/10.5281/zenodo.7591524 (Zahn, 2023b).
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